	研究課題名			
No.	主担当部署	研究の概要	評価結果及び委員からのコメント	提案機関へのアドバイス
	研究期間			
2	SDGs 素材を用いた播	近年のSDGsへの注目から、色々な	【採択】	・低コスト化を研究して、実用化を目指してほ
	州織生地の試織に関	SDGs繊維素材が開発されつつある。	・SDGs 素材(糸)による環境に優しい研	LIV.
	する研究	繊維工業技術支援センターでは、株	究である。	・パインアップル繊維の織物については、風合
		式会社フードリボン(沖縄県)との共	・繊維産業界の問題点・課題がよく理	い(肌触り)についての検討が必要である。
		同研究および令和3年度重点領域研	解できた。SDGs に配慮した産学官連	・服飾品だけでなく、食品容器素材としての利
		究にて、廃棄されるパイナップル葉か	携の取り組みを積極的に行われてい	用はできないものか。コストパフォーマンス
		ら取り出した繊維の可紡性を向上さ	ることは、大いに評価できる。	の面も気になるところである。
		せて紡績糸とし、織物や編物として製	·SDGs 素材の利用は今後必須となるの	・色や素材特性のばらつきなどから調査するこ
	繊維工業技術支援セ	品化を目指している。	で、本試織は急務である。	とも、まずは価値がある。手触りに課題があ
	ンター	また、株式会社カラーループ(京都	・リサイクルに比べ環境負荷が小さい	るため、直接触れないプロダクト(カーペッ
	令和5年度	市)と協同で令和4年度の重点領域研	アップサイクルは、今後ますます重要	トや壁材など)への展開なども同時に検討す
	(1年間)	究「アップサイクル糸を用いた最終製	になる。工業技術センターがやるべき	るべき。
		品の試作」を実施中である。このアッ	研究テーマである。	・アップサイクルのトータルコストがリサイク
		プサイクル糸は、繊維材料は複合化が	・実用化に向けて研究を進めてほし	ルや新品素材を使う場合よりも高くなること
		進み、素材別リサイクルが困難である	ίν₀	はないか?エコであることが新しい付加価値
		ことから色で分別しており、環境負荷	・減少傾向にある織物の公設試験研究	になるような取り組みが必要である。
		の大きい染色工程が不要であること	機関として、将来につながる研究開発	・パイナップル葉繊維について開発から携わっ
		からSDGs素材として注目を集めてい	に携わっていることは評価できる。	ていることは評価できるが、身近な県産の素
		る。		材を活用することも考えてはどうか?コスト
		上記のSDGs繊維素材は未だ試作段		についても十分検討して頂きたい。
		階であり、強伸度試験や糸むら試験な		
		どの糸の特性や製織性、風合いなどが		
		不明であるため、本テーマにて明らか		
		にする。		

	研究課題名			
No.	主担当部署	研究の概要	評価結果及び委員からのコメント	提案機関へのアドバイス
	研究期間			
3	SDGs 対応革の開発	スタール・ジャパン(株)では最近、	【採択】	・高級な商品への移行も検討を。
		│日本に新規脱脂剤「プロデグリーゼ」 │	・実用化まで近い。国際的な重要な研	- 研究成果をより多くの県内企業に活用される
		を輸入した。この薬剤で脱脂すると、	究となり得る。	ための取り組みが必要である。
		従来法に比べて脱脂力が高く、排水処	・兵庫県内の皮革産業振興にとって実	・SDGs の進め方には 2 種類あり、 1 つは地域
		理負荷を大きく軽減できる。鞣し工程	用性が高い研究であり、研究成果が製	で Loop 組織を作って効率を上げる方法と、も
		においては、これまで検討してきた有	品開発と結びついていることがわか	う1つは All Japan などコラボレーションで
		機高分子系鞣剤や植物タンニン鞣剤	った。	効率を上げる方法だと考えるが、コラボレー
		を用いて、従来のクロム鞣しよりも排	·SDGs 推進のためには単独組織での取	ションは難しいのか(単なる思いつきだが)。
	皮革工業技術支援セ	水処理の負担を軽減する。再鞣工程に	り組みには限界があるため、海外の良	・個人のユーザが増えているように聞いている
	ンター	おいては、石油由来の薬品が大部分を	いパートナーをみつけて進められて	が、そこへの貢献についてはどうか。
	令和5年度	占めているが、植物由来の薬品に切り	はどうか。	・海外の研究機関や業界の動向について調査さ
	(1年間)	替えることで SDGs 達成を目指す。本	·SDGs に対する現実的な取り組みであ	れているか。輸入した薬剤の利用方法を開発
		研究では、これらの薬品を用いた製革	り、日本の皮革産業を維持するために	することは非常に重要だが、新しい薬剤の開
		技術を確立するため、小スケールにお	必要な研究である。	発まで手掛けることができれば理想的であ
		いて試作を行い、試作革を分析して、	・地場産業の活性に必要な研究であ	る 。
		物性などの分析データを集めた後、最	る。	・国内にない薬品を使用してその効果を検証し
		適な製造処方を確立し、最終的には半	・新たな薬剤を利用して環境負荷の少	ようとする試みは評価できるが、難しいとは
		裁によるスケールアップ試験、タンナ	ない皮革の製造方法にチャレンジし	思うが、将来的には新たな薬品開発や手法の
		一における実証試験を行う。	ていることは評価できる。県内産業の	開発も視野に入れると有難い。
			生き残りをかけて頑張っていただき	
			たい。	

	研究課題名			
No.	 主担当部署	研究の概要	評価結果及び委員からのコメント	提案機関へのアドバイス
	研究期間			
4	一次産業のための次	2年前から、工業技術センターでは農	【採択】	・魚以外の動物(牛・豚)等への応用について
	世代マイクロ計測技	林水産技術総合センターと協力して、一	・植物・魚への面白い研究であり、計	も検討を期待する。
	術に関する研究	次産業の生産量向上を目標に、最近、注	測法としては有効である。	・魚の血中グルコース量と体脂肪の関係につい
		目されているIoT技術の適応可能性につ	・着眼点がユニークで面白いと思う。	ても、相関が高いと考えられるため、体調管
		いて検討してきた。その成果の一例とし	他の研究に応用できる可能性も高く、	理というより、体脂肪管理という視点からの
		て、高湿度環境下でも測定可能な高精度	将来性のあるテーマである。	評価も可能である。
		温湿度センサを開発し、非常に難しいク	・新規性の高いテーマで興味深い。	・近畿大学と密に議論をして、有意義な成果が
		リの挿し木繁殖に成功し、それに適した	・農業や漁業の分野にマイクロエレク	でることを期待する。
	 技術企画部	温湿度の知見を得ることができた。	トロニクス技術を導入することによ	・共同研究先との連携が非常に重要である。
	IXMIE EIP	今年度は、更なる生産量向上のため、	り、従来に比べて定量的なデータを短	・マイクロデバイスを農業、漁業の振興に活用
	令和5年度	当センターで培った過去 10 年に及ぶ	時間で得ることを目的とした研究で	する試みは大いに評価できるが、テーマの内
	(2年間)	MEMS(微小電気機械システム)に代表さ	あり、本質的に重要な研究である。	容からみて研究員の従事割合が低いのではな
		れるマイクロ領域の技術(誌上論文発	・重要な技術と思っている。魚の生体	いかと心配である。
		表:20件)を用いて、今までに類を見な	計測は良いと思う。	
		い技術アプローチで一次産業への支援	・MEMS 技術の応用としては、興味ある	
		を行う。具体的には、肥料等の開発可能	テーマであると考える。特にマイクロ	
		な簡易診断手法の提案を目標に、マイク	チャネルの応用は、本研究による成果	
		口流路を利用して植物一個体の根毛毎	と実際とがどの程度一致するか必ず	
		に様々な物質を与え、各根毛の伸長の差	しもよくわかっていないように思う。	
		異を計測する。また、魚の健康管理を目	ただ、時間がかかる農業の改善に対し	
		標に、魚の血管中に挿入可能なマイクロ	て有効であると考える。	
		センサを製作し、遊泳中の魚類の血中グ		
		ルコース等の物質を計測して基本代謝		
		を調べる。		

No.	研 究 課 題 名 	研究の概要	評価結果及び委員からのコメント	提案機関へのアドバイス		
	研究期間					
5	レーザ溶着における	自動車部品などの小型化・軽量	【採択】	・信頼性の向上方法の研究に期待する。		
	接合部品質および強	化・樹脂化に伴い、接着剤を用い	・異種材料の接合の組合せを研究。	・研究成果を産業や地域経済に波及させる点を		
	度に関する研究	ることなく樹脂同士を接合する	・レーザ溶着が、環境に優しい高付加	もう少し具体的に PR するべき。		
		レーザ溶着が急増している。レー	価値技術の一つであること、新規性の	・具体的な対象と数値目標を決めて、県の特色		
		ザ溶着部の評価には引張による	高い課題であることがわかった。	を出した上で進めていくべき。		
		破壊試験が適用されているが、接	・接着剤が不要な接合方法のため環境	・装置を購入もしくは開発する必要がある。		
		合状態との関連性が不明なまま	に優しく応用範囲が広い。この技術が	・単に技術の評価、試験だけでなく、本技術を		
		実施されることから、最適な溶着	確立されると波及効果が大きい。	当センターで主体的に開発し、県下の企業へ		
	 生産技術部	条件を求めることができない。	・今後の必要な技術であり、研究は進	の普及も視野に入れてほしい。		
		本研究では、レーザ溶着部の接	めるべき。			
	令和5年度	合状態を非破壊で観察後、引張試	・新しい可能性を秘めた技術へ挑戦す			
	(1年間)	験等を実施することにより、接合	ることは大切であり、是非積極的に進			
		強度と接合状態との関係を明ら	めて頂きたい。			
		かにする。これは強度低下の原因				
		となる欠陥(気泡、接着不良)低				
		減につながり、接合強度を向上で				
		きる。				